The community site for and by
developmental and stem cell biologists

Tenure Track Faculty Position in Cell and Developmental Biology at Boston College

Posted by , on 18 September 2018

Closing Date: 15 March 2021

Position Description
The Boston College Biology Department seeks outstanding candidates for a tenure-track faculty position in the area of Cell and Developmental Biology. Applicants are sought at the Assistant Professor level; however, exceptionally strong candidates will be considered at the Associate Professor level. The university provides competitive startup funds and research space with the expectation that the successful candidate will establish, or bring to the university, a vigorous, funded research program. Special consideration will be given to candidates whose research program synergizes with current faculty interests. We especially encourage applicants whose research utilizes embryonic model systems, those who study developmental neurobiology, and/or those who work at the interface of biophysics and cell biology. The successful candidate will join an active and expanding department with current strengths in cytoskeletal regulation, developmental biology, cancer biology, as well as microbiology, infectious disease, and computational biology.

Visit www.bc.edu/bc-web/schools/mcas/departments/biology/research/faculty-research.html for profiles of the Biology Department’s current research programs.

The university is situated on a beautiful campus dating back to the beginning of the twentieth century and is closely located to downtown Boston and Cambridge. The Biology Department has strong ongoing collaborative efforts with other departments including Chemistry and Physics, surrounding institutes including BU, Harvard, MIT, Northeastern University and Tufts University, and has state of the art (core-) facilities including next-gen sequencing, cleanrooms for nanofabrication, FACS, microscopy (including super-resolution microscopy), microfluidics, robotics, NMR and mass-spec. Moreover, the university has recently announced its decision to establish an interdisciplinary Institute for Integrated Science and Society, and the building is scheduled for construction beginning Spring 2019.

How to Apply
Applicants should submit a cover letter, curriculum vitae, a statement of research plans, a statement of teaching interests, and arrange for three letters of reference. All application materials should be submitted via Interfolio at http://apply.interfolio.com/53713. Review of applications will begin on October 1st and will continue until the position is filled.

Thumbs up (No Ratings Yet)
Loading...

Categories: Jobs

Navigate the archive

Use our Advanced Search tool to search and filter posts by date, category, tags and authors.

Tenure Track Assistant Professor — Cell Biology

Posted by , on 14 September 2018

Closing Date: 15 March 2021

The University of Virginia invites applications for a tenure-track Assistant Professor position in the Department of Biology. We seek applicants who have a research vision that addresses new or longstanding fundamental questions in cell biology. Located within the College of Arts and Sciences, the Department of Biology provides an interdisciplinary and collaborative environment for basic research and teaching that spans multiple levels of biological organization, enhanced by close collaborations with colleagues at our Schools of Medicine and Engineering & Applied Sciences. A successful candidate is expected to establish a vigorous, independent, and externally funded research program as well as provide instruction and scientific training at the undergraduate and graduate levels. Applicants with a respect for diversity and a passion for making a positive impact on the world in a collaborative environment are strongly encouraged to apply. The position will begin on August 25, 2019.

Applicants must have a Ph.D. or other doctoral degree and post-doctoral research experience. A successful applicant will also have research accomplishments and plans of outstanding quality and significance as well as a commitment to excellence in teaching and mentoring. Commitment to participate in and further develop a diverse, collegial, interdisciplinary, and collaborative environment is strongly preferred.

To apply, jobs.virginia.edu/applicants/Central?quickFind=85482. Complete a candidate profile online, attach a cover letter that succinctly highlights your most significant research accomplishments, experiences, and qualifications; a curriculum vitae; a research statement that describes your vision for your research program at the university (≤ 3 pages); a statement of teaching goals; and the contact information of three references. The deadline for receipt of applications is October 31, 2018.

For questions regarding the position, please contact search chair Keith Kozminski, Associate Professor of Biology, at biocellsearch@virginia.edu; for questions about the application process, please contact Savanna Galambos, Faculty Search Advisor, at: skh7b@virginia.edu

UVA assists faculty spouses and partners seeking employment in the Charlottesville area. To learn more please visit  http://provost.virginia.edu/dual-career

For more information about UVA and the surrounding area, please visit http://uvacharge.virginia.edu/guide.html

The University of Virginia is an equal opportunity and affirmative action employer. Women, minorities, veterans and persons with disabilities are encouraged to apply.

Thumbs up (No Ratings Yet)
Loading...

Categories: Jobs

Tenure track faculty position in Neurobiology-University of South Carolina

Posted by , on 10 September 2018

Closing Date: 15 March 2021

The Department of Biological Sciences at the University of South Carolina invites applications for a tenure-track position as an Assistant Professor with a research program in neurobiology. The successful candidate will be expected to establish an independent, extramurally funded research program focusing on cell-cell communication in neural development and/or disease. We are especially interested in applicants studying how interactions among neurons or between neurons and other cell types such as astrocytes, oligodendrocytes, Schwann cells, microglia, macrophages or endothelial cells contribute to nervous system development, disease, or response to injury in any experimental or model system. The successful candidate will have a Ph.D. or an M.D., and will have completed post-doctoral training in a relevant area of neuroscience or biomedical sciences. He or she will interact with research groups in Biological Sciences, including the Center for Childhood Neurotherapeutics that includes neuroscientists focusing on mechanisms of neural development and neural repair. Additionally, the University has a highly interactive neuroscience research community that encourages and precipitates collaborations. The candidate will be responsible for teaching at undergraduate and graduate levels in courses appropriate to his/her expertise.

 

To ensure full consideration, applications should be received by November 16, 2018. All applicants must fill out an online application at the USC employment website at: http://uscjobs.sc.edu/postings/39584. Qualified candidates should include with their application a curriculum vita, research statement (3 pages) and teaching philosophy (1 page). The names, email addresses and phone numbers of at least three references should also be provided. Additional information on the position and the Department of Biological Sciences can be found at http://www.biol.sc.edu/. For questions or further information, please contact Dr. Fabienne Poulain (fpoulain@mailbox.sc.edu).

 

The University of South Carolina is an affirmative action, equal opportunity employer. Minorities and women are encouraged to apply. The University of South Carolina does not discriminate in educational or employment opportunities on the basis of race, color, religion, national origin, sex, sexual orientation, gender, age, disability, veteran status or genetics.

Thumbs up (No Ratings Yet)
Loading...

Tags: , , ,
Categories: Careers, Jobs, Uncategorized

Postdoc position on ageing in the Drosophila nervous system

Posted by , on 6 September 2018

Closing Date: 15 March 2021

BBSRC funded postdoc position in the laboratory of Natalia Sánchez-Soriano (https://sanchezlab.wordpress.com), to study the cell biology of neuronal ageing and the underlying mechanisms.

 

Click to see a version with text

 

On this project you will study the harmful changes that neurons undergo at the subcellular level during ageing, and unravel the cascade of events that cause them. The focus will be on intracellular degradation systems and the upstream regulatory pathways.

Ideally, applicants should be trained in neuro- and/or in vivo cell biology, and imaging, and have some experience with Drosophila.

 

The post is available from 1/12/2018 until 30/11/2021.
To apply, please visit: https://recruit.liverpool.ac.uk
Job Ref: 009911, closing Date: 17 September 2018

Thumbs up (No Ratings Yet)
Loading...

Tags: , , , , , , , ,
Categories: Jobs

This month in preLights – August

Posted by , on 5 September 2018

Welcome to our monthly summary of developmental biology (and related) preLights.

 

preLighters are early-career researchers who select and highlight preprints which they feel are interesting for the life-science community. While writing highlight posts is mostly an individual effort, plenty of interactions between the preLights team members take place on our Slack channel. This is where last month several preLighters decided to respond to a controversial World View article in Nature about the danger of preprints, and they shared their well-argued (and highly read) commentary here on the Node. Apart from that, the month of August was not short of exciting developmental biology (and related) preLights, we hope you enjoy this selection!

 

Gene expression and cell fate

There was a good mix of preLights dealing with gene expression in various models, such as fish, flies and living neuronal tissue. Idoia Quintana-Urzainqui discussed a preprint showing that in zebrafish embryos, this first wave of transcription is restricted to a special nuclear compartment. Later on in development, transcription factors, which are often tissue-specific, regulate cell fate. Amanda Haage highlighted how the progression from pluripotent blastula cells to neural crest cells is regulated by a transition from SoxB1 to SoxE transcription factors in zebrafish. Moving to flies, Clarice Hong’s and Natalie Dye’s preLight both dealt with transcription factor function. Clarice discussed how binding site orientation and spacing determines the activity and specificity of Hox transcription factors, while Natalie reported on how the transcription factor Doublesex is involved in the decision making of male vs. female gonad stem cell niches. Finally, Theresa Rayon illustrated how cells make transitions during neurogenesis. The study she preLighted imaged the Hes5 transcription factor in real-time and showed that its fluctuating expression in neuronal progenitors turns oscillatory as cells enter differentiation.

 

Neurodevelopment and morphogenesis

Neurogenesis during development of the cortex was the focus of Boyan Bonev’s preLight. By using a new labelling approach, the study uncovered the temporal order in the production of diverse neuronal subtypes and found that many of them emerge simultaneously. Ashrifia Adomako-Ankomah highlighted the spectacular morphogenetic events occurring during development of the eye. The research identified an important role for the protein nidogen, secreted by the surrounding neurocrest cells, in shaping the optic cup in zebrafish. Nidogen also featured in the preLight of Nargess Khalilgharibi, and it turned out that this protein is not essential for Drosophila morphogenesis, but still has tissue-specific functions. Lastly, Andreas van Impel reviewed how the local translation of a transcript at the leading edge of migrating endothelial cells regulates blood vessel formation.

Figure taken from preprint by Bryan et al., highlighted by Ashrifia Adomako-Antomah

 

Tools & Technologies

Undoubtedly, new methodologies are key in paving the way for discoveries in developmental biology. Hannah Brunsdon covered  a technique with enormous potential, in which the authors combined CRISPR lineage tracing with single-cell RNA sequencing to decode early mammalian development. Tools to regulate gene expression are highly desired not only for basic research, but also for potential future gene therapies. Tim Fessenden highlighted a clever technique to control the level of transgene expression by integrating synthetic miRNA target sites into the transgene. Tuning gene expression by changing the regulatory 3D interactions was the focus of Ivan Candido-Ferreira’s highlight, which showcased the use of CRISPR technology in combination with optogenetics. While optogenetics is broadly used in many experimental systems, it seems tricky to get it to work in some organisms, such as the C. elegans embryo. Angika Basant discussed an approach in her preLight that showed how such a limitation (in this case germline silencing) could be overcome. Lastly, Samantha Seah preLighted the development of a microfluidic device that allows imaging of sea anemone larvae, which are models for coral symbiosis. Make sure to read the authors’ comments who tell us about how the project was created.

 

Figure taken from preprint by Chan et al., highlighted by Hannah Brunsdon

 

Do also visit the preLights website to discover further interesting preprint highlights, such as Gautam Dey’s post on a statistical tool that provides an alternative to the p-value , or Nicola Stevenson’s highlight on the horizontal transfer of RNAs in honeybees!

 

 

Thumbs up (3 votes)
Loading...

Tags: ,
Categories: Highlights

Publishing peer review reports

Posted by , on 5 September 2018

Last week, Development and our sister journal Journal of Cell Science signed an open letter coordinated by ASAPbio, signalling our intention to publish peer review reports alongside published papers. I’m really delighted to be making this commitment and wanted to take the opportunity to say a few words about our thinking behind this decision.

So why publish peer review reports and why start doing it now? The commentary in Nature that came out to accompany the open letter does, in my opinion, a great job of explaining the both the benefits and the potential pitfalls involved in publishing peer review reports and associated correspondence.  Above all, what we gain is transparency: both in terms of providing the reader additional information about the published paper and in opening up the journal’s decision-making process. Referee reports and author point-by-point responses give valuable insight into why a paper is seen by referees as important for the field, what the caveats with the work might be, and how a paper has evolved through the peer review process. I am proud of the job that Development’s Academic Editors do in helping to select papers to be published in the journal, and I’m happy to showcase the work they do in a more transparent manner.

We still have many details to work out in terms of exactly what information we will be making public, and how we will be doing it, but one thing we are clear on is that referees should still have the right to remain anonymous – both to the authors and the reader. We know from talking to the community that many referees would feel uncomfortable signing their name on a report. While open identities are a nice idea in theory, there is a strong risk that forcing referees to sign their names might compromise the quality and rigour of peer review – would you to be happy to openly criticise a paper written by someone you think might review your next manuscript, or sit on your next grant panel?  If referees want to sign their name, they are more than welcome to do so, but we do not want to make this essential.

With the protection of anonymity, though, we hope that referees will continue to do the excellent job they do in assessing papers for Development. I was part of the team at The EMBO Journal when they initiated their policy of transparent peer review, and we were concerned that referees would refuse to review papers, or would provide only ‘bland’ reports. Neither of these concerns came to pass, and the positive experience I had with transparent peer review there convinced me that it would be a good thing to implement across journals more broadly.

Development has been considering publishing peer review reports for some years. A few of our editors have been strong proponents of the policy for a long time; others have been more cautious – primarily for the reasons detailed above and in the Nature commentary. A few years ago, we conducted a community survey asking about priorities in peer review innovations, and this told us that there were other things our readers cared about more – such as introducing cross-referee commenting (which we implemented a couple of years ago). Now, however, we feel that the time is right to start planning for publishing referee reports – and this is something that our incoming Editor-in-Chief James Briscoe is  keen to implement, with the full support of all our editors. Early reactions to our announcement on social media suggest that this move will be welcomed by the community. We will be working with Journal of Cell Science to implement transparent peer review; the other Company of Biologists journals will be reviewing how things go at Development and Journal of Cell Science and consulting with their communities before deciding on their own plans.

We hope to introduce this policy in early 2019. For now, though, we welcome any feedback you may have, and look forward to sharing further details as our plans progress.

 

 

Thumbs up (3 votes)
Loading...

Tags: ,
Categories: Discussion, News

EMBL GROUP LEADER POSITION – Developmental Biology Unit

Posted by , on 5 September 2018

Closing Date: 15 March 2021

The Developmental Biology Unit seeks to understand the general principles and mechanisms underlying the development of multicellular organisms. Researchers in the unit combine the power of genetic model organisms with quantitative imaging and -omics technologies, synthetic biology, reduced (in vitro) systems and theoretical modelling, to create a cross-cutting approach to modern developmental biology.

Research in the Developmental Biology Unit is firmly embedded within the overall EMBL environment, with extensive in-house collaborations, access to outstanding graduate students and postdoctoral fellows, and support from cutting-edge facilities, including genomics, transgenesis, metabolomics, mass-spectrometry, and microscopy. EMBL brings together the most talented scientists, empowering them to explore bold new areas of biological inquiry and carry out interdisciplinary research.

We are seeking to recruit outstanding group leaders who aim to establish novel approaches to investigate multicellular development at all scales, from the cellular and tissue, to the whole organism level.

For more information and for the application please go to the following links:

https://www.embl.de/jobs/searchjobs/index.php?ref=HD01364&newlang=1&pos[]=FAC

EMBL_GL_Developmental_Biology Unit

Thumbs up (No Ratings Yet)
Loading...

Tags: , ,
Categories: Careers, Jobs, Research

The people behind the papers – Jaqueline Kinold & Hermann Aberle

Posted by , on 4 September 2018

Axon guidance relies on the reception and integration of molecular cues from the environment by growth cones, and defective pathfinding results in misplaced projection patterns in the mature nervous system. A new paper in Development investigates this process in the Drosophila neuromucular system, as well as the consequences of axonal miswiring to locomotion. We caught up with lead author Jaqueline Kinold and her supervisor Hermann Aberle, Professor in the Department of Functional Cell Morphology at Heinrich Heine University, Düsseldorf.

 

Hermann and Jaqueline

 

Hermann, can you give us your scientific biography and the questions your lab is trying to answer?

HA In retrospect, I find it quite interesting that my work was all the time somehow associated with cell adhesion and cellular junctions. I started off as a PhD student in Rolf Kemler‘s lab in Freiburg, working on vertebrate Cadherin-Catenin complexes, which connect neighbouring epithelial cells at adherens junctions. As a postdoctoral fellow, I switched topics and changed to Drosophila neuromuscular junctions (NMJs) in Corey Goodman‘s lab at UC Berkeley, where I was involved in a large-scale mutagenesis screen searching for genes that affected the morphology of these terminals. After cloning and functional characterization of the wishful thinking gene, I moved to Christiane Nüsslein-Volhard‘s lab at the MPI for Developmental Biology in Tübingen. There, we cloned several other genes that came out of the screen, including tolloid-related, mical, ankyrin-2 and neuroligin-1. During this time, and inspired by work of Darren Gilmour, we also developed tools and techniques to image migrating motor axons in living Drosophila embryos. Receiving a grant from the German Research Foundation and a generous invitation to join Christian Klämbt‘s department, we moved to the University of Münster, where we not only had fantastic imaging opportunities but also focussed more and more on the function of the axon guidance molecule sidestep (side), which also came out of the screen. In 2010, I received a call from the Heinrich Heine University in Düsseldorf, where we developed the idea to search for behavioural consequences of wiring defects.

 

Jaqueline, how did you come to join the lab, and what drives your research?

JK I studied biology at the University of Kassel and did my diploma thesis on the topic of spermatogenesis in Drosophila under the supervision of Mireille Schäfer. Afterwards, I wanted to continue my research with Drosophila, but I could imagine a change of topic and laboratory for my PhD very well. Hermann’s job advertisement and also his project description during my interview fascinated me very much. On the one hand, the correct wiring of the muscles is a multifaceted process in which many different components interlock and, on the other hand, the different methods and starting points spoke in favour of joining Hermann’s laboratory.

 

Control and side mutant larvae expressing the postsynaptic marker ShGFP and dsRed in motor acons and salivary glands. From Figure 1 in the paper.

 

When did your lab first get interested in the link between neuronal wiring and locomotion in flies?

HA Since the phenotype of side mutants is really strong, I was once asked after a talk if this has any consequences for viability or eclosion. This question stuck in my mind and I started to realize that most papers in the field dealt with the guidance process itself, in embryos, and hardly anybody was exploring postembryonic stages, when the neuromuscular system is actually functional and constantly contracting. Together with the Drosophila community moving more and more into circuit analysis and behavioural studies, I asked myself which behaviour could be affected by our mutations. It took a while until I realized that locomotion and movements are the underlying basis for most, if not all, behaviours. However, it took a while until we had all the necessary technical equipment. In fact, everything truly started as the high-speed video camera arrived.

 

Can you give us the key results of the paper in a paragraph?

HA We examined the final innervation pattern on all muscles in side mutant third instar larvae. From this survey, we derived three major conclusions. First, innervation defects were permanent, i.e. even if potential rescue mechanisms exist, they failed to restore NMJs at non-innervated muscles. Second, loss of side affected all peripheral motor pathways and thus all body wall regions. Third, innervation errors were non-stereotypical and appeared in each hemisegment differentially. Since Side functions as a substrate-bound attractant, ventral bypass phenotypes or lack of NMJs at distal-most muscles, could be explained by insufficient attraction, which either inhibits defasciculation or slows axonal growth, respectively.

 

Overexpression of Side (E’) and Side-Cherry (F’) in muscle progenirots leads to premature stalling of motor axons, from Figure 3 in the paper

 

JK Also, overexpression of Side attracted motor axons at the wrong time to the wrong place, resulted in innervation defects. This was particularly evident when we expressed Side in muscle precursors. Attraction was that strong that individual axons travelling in the ISN were stretched into opposite directions leading to split pathways and complete lack of NMJs on dorsal-most muscles. This caused also amazing locomotion phenotypes. During crawling, larvae detached from the substrate and excessively lifted their head and tail segments into the air, despite lack of dorsal innervation. Nobody was expecting such a phenotype. Crawling seems to be much more complex than anticipated.

 

A dorsal view of third instar larvae showing some of the variability in the side phenotype, from Figure 2 in the paper.

 

side mutants show considerably variable phenotypes, even in adjacent hemisegments. What do you think this tells us about how axon guidance works in flies?

HA At the beginning of the screen, in Corey Goodman’s lab, we discussed a lot what kind of phenotypes we might possibly find. One such idea was that we might find genes that affect only a single NMJ on a specific muscle fibre, because we imagined a key-and-lock mechanism for wiring 30 muscle fibres, where unique ligands on motor axons connect to cognate receptors on muscles. Inactivating such a receptor by point mutations should in theory prevent the formation of the associated NMJ. Unfortunately, we did not find this phenotypic class, nor did anybody else. We therefore think that motor axon guidance in Drosophila is not hard-wired by high-affinity ligand-receptor complexes but rather functions via co-operative actions of several guidance molecules. Newer finding in Pablo Labrador‘s laboratory also push this older idea originally developed in the Keshishian and Goodman labs. Guidance decisions therefore seem to be made at several points and sum up along the entire path. If several decisions go wrong in a row, phenotypes become noticeable.

 

Do the locomotion defects you found in larvae have anything to tell us about movement disorders in mammals?

HA Oh yes, I think this is one of the interesting parts of our story. Similar to Drosophila, there are only a few mammalian studies that correlate axon guidance errors with muscle innervation patterns. But these studies made several interesting observations. First, in mice, if a motor nerve branch fails to develop or is severely stalled, entire muscle fields are not innervated after birth causing muscle atrophy. In limbs, this can lead to paralysis and aberrant locomotion patterns. Second, the phenotypes are not necessarily symmetrical and occasionally affect only one side of the body, i.e. very similar to the unilateral defects observed in side mutants. Third, feet and ankles of affected limbs are occasionally twisted inward in newborn mice, a deformity highly reminiscent to congenital clubfoot in humans. The aetiology of clubfoot is still not fully understood, but since it frequently develops unilaterally, one speculative possibility is that it could develop due to innervation defects.

 

When doing the research, did you have any particular result or eureka moment that has stuck with you?

JK There was not one key moment that has stuck with me, but several small highlights, especially at the laser-scanning microscope. I am over and over again enthusiastic about how “beautiful” the axonal pattern in the embryo or larva is.  Further, I had such special moments when larvae showed particularly strong or unusual phenotypes during crawling, which looks sometimes quite funny.

 

Drosophila larva overexpressing Side in muscles and showing an extreme crawling phenotype.

 

And what about the flipside: any moments of frustration or despair?

JK Yes, there were some of these frustrating moments, especially handling living larvae for videography. During my research, I have realized that Drosophila larvae have sometimes their own mind, as they decided not to crawl at all or not to crawl in a straight line for the high-speed videography, but rather to crawl away from the nicely prepared agar block.

 

What next for you after this paper?

JK Since this paper is only a partial project of my PhD thesis, I plan for the next months to press ahead with another project for publication – hopefully we can submit the manuscript successfully at the end of this year.

 

And where will this work take the Aberle lab?

HA One direction we are heading is how locomotion in animals with hydrostatic skeletons works after all. Crawling behaviour is much more sophisticated and fine-tuned than it appears at first glance. We would like to understand how specific muscle groups contribute to particular movements and how this is antagonized by the liquid-filled body cavity.  Which muscle groups, for example, induce rolling escape behaviours during attacks of predatory wasps or coordinate jumping in some dipteran larvae. Ultimately we would like to find mutations or conditions which activate or inactivate particular movements, in order to better understand the underlying circuitry and machinery. Another line of research will certainly be the functional analysis of the entire Sidestep family. There are 7 Side paralogs in the Drosophila genome and virtually nothing is currently known about their functions.

 

The Düsseldorf skyline. Image credit: Ingo Valentin, from Wikipedia.

 

Finally, let’s move outside the lab – what do you like to do in your spare time in Düsseldorf?

JK As I am a very water-loving person, I like to spend my spare time along the Rhine river – whether for a walk or to make myself comfortable on a blanket on its shores and let my soul dangle watching the ships passing by. I also like to take advantage of the city’s concert events, as two of my favourite bands, “Die Toten Hosen” and “Broilers”, come from Düsseldorf and regularly give concerts in the city. Furthermore, the whole laboratory and I like to celebrate the Düsseldorf Carnival, which takes place every spring.

HA Düsseldorf has a quite lively art scene, and since I enjoyed landscape photography very much during my undergraduate years, I am particularly drawn to the “Düsseldorf School of Photography”, founded by Bernd and Hilla Becher. Whenever there are exhibitions by Andreas Gursky, Axel Hütte, Thomas Ruff, to name a few, I try to not miss the vernissage. I also love to shop for coffee-table books in local stores.


 

Sidestep-induced neuromuscular miswiring causes severe locomotion defects in Drosophila larvae
Jaqueline C. Kinold, Carsten Pfarr, Hermann Aberle
Development 2018 145: dev163279 doi: 10.1242/dev.163279

This is #49 in our interview series. Browse the archive here.

 

Thumbs up (2 votes)
Loading...

Tags: , , , , ,
Categories: Interview

August in preprints

Posted by , on 3 September 2018

Welcome to our monthly trawl for developmental biology (and other related/just plain cool) preprints. 


 

This month we found a tonne of  papers dealing with various aspects of inheritance in worms, a flush of fly mechanics, and more single cell sequencing than you could shake a stick at. And as summer draws to a close, it’s raining cats and dogs (and wolves) in our ‘Why not…’ section.

The preprints were hosted on bioRxivPeerJ, and arXiv. Let us know if we missed anything, and use these links to get to the section you want:

 

Developmental biology

Patterning & signalling

Morphogenesis & mechanics

Genes & genomes

Stem cells, regeneration & disease modelling

Evo-devo & evo
Cell biology
Modelling
Tools & resources
Research practice & education
Why not…

 

 

Developmental biology

| Patterning & signalling

 

Formation of periodic pigment spots by the reaction-diffusion mechanism
Baoqing Ding, Erin L. Patterson, Srinidhi Holalu, Jingjian Li, Grace A. Johnson, Lauren E. Stanley, Anna B. Greenlee, Foen Peng, H. D. Bradshaw Jr., Benjamin K. Blackman, Yao-Wu Yuan

 

Stomatal expression of SOL1 and SOL2 from Simmons, et al.’s preprint

 

SOL1 and SOL2 Regulate Fate Transition and Cell Divisions in the Arabidopsis Stomatal Lineage
Abigail R Simmons, Kelli A Davies, Wanpeng Wang, Zhongchi Liu, Dominique C Bergmann

 

Paralogues of the PXY and ER receptor kinases enforce radial patterning in plant vascular tissue.
Ning Wang, Kristine S Bagdassarian, Rebecca E Doherty, Xiao Y Wang, Johannes T Kroon, Wei Wang, Ian H Jermyn, Simon R Turner, Peter Etchells

 

Maize EHD1 is Required for Kernel Development and Vegetative Growth through Regulating Auxin Homeostasis
Yafei Wang, Wenwen Liu, Hongqiu Wang, Qingguo Du, Zhiyuan Fu, Wen-Xue Li, Jihua Tang

 

A galling insect activates plant reproductive programs during gall development
Jack C Schultz, Patrick P Edger, Melanie JA Body, Heidi M Appel

 

The RopGEF KARAPPO is Essential for the Initiation of Vegetative Reproduction in Marchantia
Takuma Hiwatashi, Koh Li Quan, Yukiko Yasui, Hideyuki Takami, Masataka Kajikawa, Hiroyuki Kirita, Mayuko Sato, Mayumi Wakazaki, Katsushi Yamaguchi, Shuji Shigenobu, Hidehiro Fukaki, Tetsuro Mimura, Katsuyuki T. Yamato, Kiminori Toyooka, Shinichiro Sawa, Daisuke Urano, Takayuki Kohchi, Kimitsune Ishizaki

 

Xenopus hybrids provide insight into cell and organism size control
Romain Gibeaux, Kelly Miller, Rachael Acker, Taejoon Kwon, Rebecca Heald

 

Drosophila embryos in Crossman, et al.’s preprint

 

EGFR signaling coordinates patterning with cell survival during Drosophila epidermal development
Samuel Henry Crossman, Sebastian J Streichan, Jean-Paul Vincent

 

Drosophila R8 photoreceptor cell subtype specification requires Notch and hibris.
Hong Tan, Ruth E Fulton, Wen-Hai Chou, Denise A Birkholz, Meridee P Mannino, David M Yamaguchi, Steven G Britt

 

Oskar variants in Drosophila S2R+ cells from Kistler, et al.’s preprint

 

PHASE TRANSITIONED NUCLEAR OSKAR PROMOTES CELL DIVISION OF DROSOPHILA PRIMORDIAL GERM CELLS
Kathryn E. Kistler, Tatjana Trcek, Thomas R. Hurd, Ruoyu Chen, Feng-Xia Liang, Joseph Sall, Masato Kato, Ruth Lehmann

 

tudor-domain containing protein 5-prime promotes male sexual identity in the Drosophila germline and is repressed in females by Sex lethal
Shekerah Primus, Caitlin Pozmanter, Kelly Baxter, Mark Van Doren

 

ELYS coordinates NF-κB pathway dynamics during development in Drosophila
Saurabh Jayesh Kumar Mehta, Vimlesh Kumar, Ram Kumar Mishra

 

Dual role of Bnl/Fgf signaling in proliferation and endoreplication of Drosophila tracheal adult progenitor cells
Xavier Franch-Marro, Cristina de miguel, Josefa Cruz, David Martín

 

A screen for targets of the Drosophila pseudokinase Tribbles identifies Neuralized and Mindbomb, ubiquitin ligases that mediate Notch signaling
Anna Shipman, Christopher Nauman, Britney Haymans, Rachel Silverstein, Leonard Dobens Jr.

 

Gal4 drivers labelling columnar neuron classes in the fly brain, from Omoto, et al.’s preprint

 

Neuronal constituents and putative interactions within the Drosophila ellipsoid body neuropil
Jaison Jiro Omoto, Bao-Chau Minh Nguyen, Pratyush Kandimalla, Jennifer Kelly Lovick, Jeffrey Michael Donlea, Volker Hartenstein

 

Staufen2 mediated RNA recognition and localization requires combinatorial action of multiple domains
Simone Heber, Imre Gaspar, Jan-Niklas Tants, Johannes Günther, Sandra M Fernández Moya, Robert Janowski, Anne Ephrussi, Michael Sattler, Dierk Niessing

 

CTP synthase regulation by miR-975 controls cell proliferation and differentiation in Drosophila melanogaster
Wai-Kan Woo, Najat Dzaki, Ghows Azzam

 

Neuropeptides required for Drosophila development under nutritional stress are regulated by the ER-Ca2+ sensor STIM
Megha M, Christian Wegener, Gaiti Hasan

 

Deterministic Nature of Cellular Position Noise During C. elegans Embryogenesis
Xiaoyu Li, Zhiguang Zhao, Weina Xu, Rong Fan, Long Xiao, Xuehua Ma, Zhuo Du

 

MicroRNA regulation of BMP signaling; cross-talk between endothelium and vascular smooth muscle cells
Charlene Watterston, Lei Zeng, Abidemi Onabadejo, Sarah J Childs

 

Wnt/Fgf crosstalk is required for the specification of tracheal basal progenitor cells
Zhili Hou, Qi Wu, Xin Sun, Huaiyong Chen, Yu Li, Yongchun Zhang, Munemasa Mori, Ying Yang, Ming Jiang, Jianwen Que

 

A micropatterned hESC colony from Massey, et al.’s preprint

 

WNT ligands stimulate transient signaling in human pluripotent cells and synergize with TGF-β ligands to stimulate sustained signaling during differentiation
Joseph Massey, Yida Liu, Omar Alvarenga, Teresa Saez, Matthew Schmerer, Aryeh Warmflash

 

EGFR confers exquisite specificity of Wnt9a-Fzd9b signaling in hematopoietic stem cell development
Stephanie Grainger, Nicole Nguyen, Jenna Richter, Jordan Setayesh, Brianna Lonquich, Chet Huan Oon, Jacob M Wozniak, Rocio Barahona, Caramai N. Kamei, Jack Houston, Marvic Carrillo-Terrazas, Iain A. Drummond, David Gonzalez, Karl Willert, David Traver

 

Electroporated mouse cortices from Pearson, et al.’s preprint

 

Foxp1 controls neural stem cell competence and bias towards deep layer cortical fate.
Caroline Alayne Pearson, Destaye Moore, Haley Tucker, Joseph Dekker, Hui Hu, Amaya Miquelajáuregui, Bennett Novitch

 

Sequential Specification of Oligodendrocyte and NG2 Cell Fates by Distinct Levels of Hedgehog Signaling
Bruce Appel, Andrew Ravanelli, Christina Kearns, Rani Powers, Yuying Wang, Jacob Hines, Maranda Donaldson

 

The endosomal sorting adaptor HD-PTP is required for ephrin-B:EphB signalling in cell collapse and motor axon guidance
Sylvie Lahaie, Daniel Morales, Halil Bagci, Noumeira Hamoud, Charles-Etienne Castonguay, Jalal M Kazan, Guillaume Desrochers, Avihu Klar, Anne-Claude Gingras, Arnim Pause, Jean-François Côté, Artur Kania

 

Conserved cell types with divergent features between human and mouse cortex
Rebecca D Hodge, Trygve E Bakken, Jeremy A Miller, Kimberly A Smith, Eliza R Barkan, Lucas T Graybuck, Jennie L Close, Brian Long, Osnat Penn, Zizhen Yao, Jeroen Eggermont, Thomas Hollt, Boaz P Levi, Soraya I Shehata, Brian Aevermann, Allison Beller, Darren Bertagnolli, Krissy Brouner, Tamara Casper, Charles Cobbs, Rachel Dalley, Nick Dee, Song-Lin Ding, Richard G Ellenbogen, Olivia Fong, Emma Garren, Jeff Goldy, Ryder P Gwinn, Daniel Hirschstein, C Dirk Keene, Mohamed Keshk, Andrew L Ko, Kanan Lathia, Ahmed Mahfouz, Zoe Maltzer, Medea McGraw, Thuc Nghi Nguyen, Julie Nyhus, Jeffrey G Ojemann, Aaron Oldre, Sheana Parry, Shannon Reynolds, Christine Rimorin, Nadiya V Shapovalova, Saroja Somasundaram, Aaron Szafer, Elliot R Thomsen, Michael Tieu, Richard H Scheuermann, Rafael Yuste, Susan M Sunkin, Boudewijn Lelieveldt, David Feng, Lydia Ng, Amy Bernard, Michael Hawrylycz, John Phillips, Bosiljka Tasic, Hongkui Zeng, Allan R Jones, Christof Koch, Ed S Lein

 

t-sne plot of an E8.5 mouse embryo, from Chan, et al.’s preprint

 

Molecular recording of mammalian embryogenesis
Michelle Chan, Zachary D Smith, Stefanie Grosswendt, Helene Kretzmer, Thomas Norman, Britt Adamson, Marco Jost, Jeffrey J Quinn, Dian Yang, Alexander Meissner, Jonathan S Weissman

 

The Warburg effect and lactate signaling augment Fgf signaling to promote sensory-neural development in the otic vesicle
Bruce Riley, Husniye Kantarci, Yunzi Gou

 

Nell2 regulates the contralateral-versus-ipsilateral visual projection as a layer-specific positional cue
Chizu Nakamoto, Elaine Durward, Masato Horie, Masaru Nakamoto

 

mRNA localisation in endothelial cells regulates blood vessel sprouting
Guilherme Costa, Nawseen Tarannum, Shane Herbert

 

Planar cell polarity pathway and development of the human visual cortex
Jean Shin, Shaojie Ma, Edith Hofer, Yash Patel, Gennady Roshchupkin, Andre M Sousa, Xueqiu Jian, Rebecca Gottesmann, Thomas H Mosley, Myriam Fornage, Yasaman Saba, Lukas Pirpamer, Reinhold Schmidt, Helena Schmidt, Bernard Mazoyer, Amaia Carrion-Castillo, Joshua Bis, Shuo Li, Qiong Yang, Michelle Luciano, Sherif Karama, Lindsay Lewis, Mark Bastin, Matthew A Harris, Ian Deary, Joanna M Wardlaw, Markus Scholz, Markus Loeffler, Veronica Witte, Frauke Beyer, Arno Villringer, Hieab HHH Adams, M Arfan Ikrum, William S Kremen, Nathan A Gillespie, Nenad Sestan, Zdenka Pausova, Sudha Seshadri, Tomas Paus

 

Bovine ovary sections in Plewes, et al.’s preprint

 

Yes-associated protein (YAP) is required in maintaining normal ovarian follicle development and function
Michele Plewes, Xiaoying Hou, Pan Zhang, Jennifer Wood, Andrea Cupp, John Davis

 

Developmental Effects of the Pesticide Imidacloprid on Zebrafish Body Length and Mortality
Akshay Krishnan, Christin Clyburn, Patrick Newcombe

 

Myocardial Notch-Rbpj deletion does not affect heart development or function
Alejandro Salguero-Jiménez, Joaquim Grego-Bessa, Gaetano D’Amato, Luis Jesús Jiménez-Borreguero, Jose Luis de la Pompa

 

Synchronization of Hes1 oscillations coordinate and refine condensation formation and patterning of the avian limb skeleton
Ramray Bhat, Tilmann Glimm, Marta Linde-Medina, Cheng Cui, Stuart Newman

 

Reduced insulin/IGF-1 signalling in adult parents increases offspring fitness
Martin I Lind, Sanjana Ravindran, Zuzana Sekajova, Hanne Carlsson, Andrea Hinas, Alexei A Maklakov

 

Bacterial community dynamics during embryonic and larval development of three confamilial echinoids
Tyler Carrier, Adam Reitzel

 

 

| Morphogenesis & mechanics

 

Mouse blastocysts from Chan, et al.’s preprint

 

Hydraulic control of embryo size, tissue shape and cell fate
Chii Jou Chan, Maria Costanzo, Teresa Ruiz-Herrero, Gregor Monke, Ryan Petrie, L Mahadevan, Takashi Hiiragi

 

Brain folding is initiated by mechanical constraints without a cellular pre-pattern
Andrew K Lawton, Tyler Engstrom, Daniel Rohrbach, Masaaki Omura, Daniel H Turnbull, Jonathan Mamou, Teng Zhang, Jennifer M Schwarz, Alexandra L Joyner

 

Ectopic expression of Hoxb1 induces cardiac and craniofacial malformations
Stéphane Zaffran, Gaelle Odelin, Sonia Stefanovic, Fabienne Lescroart, Heather Etchevers

 

Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues
Eglantine Heude, Marketa Tesarova, Elizabeth M. Sefton, Estelle Jullian, Noritaka Adachi, Alexandre Grimaldi, Tomas Zikmund, Jozef Kaiser, Gabrielle Kardon, Robert Kelly, Shahragim Tajbakhsh

 

Basolateral localization of MMP14 drives apicobasal polarity change during EMT independently of its catalytic activity
Cyril Andrieu, Audrey Montigny, Dominique Alfandari, Eric Theveneau

 

Epigenetic inactivation of miR-203 as a key step in neural crest epithelial-to-mesenchymal transition
Estefania Sanchez-Vasquez, Marianne Bronner, Pablo Hernan Strobl-Mazzulla

 

Cdc42 negatively regulates endocytosis during apical plasma membrane maintenance and development in mouse tubular organs in vivo
Akiko Shitara, Lenka Malec, Seham Ebrahim, Desu Chen, Christopher Bleck, Matthew P Hoffman, Roberto Weigert

 

Genetic control of cellular morphogenesis in Müller glia
Mark Charlton-Perkins, Alexandra D Almeida, Ryan B MacDonald, William A Harris

 

Zebrafish embryos from Liedtke, et al.’s preprint

 

Fndc3a (Fibronectin Domain Containing Protein 3A) influences median fin fold development and caudal fin regeneration in zebrafish by ECM alteration.
Daniel Liedtke, Melanie Orth, Michelle Meissler, Sinje Geuer, Sabine Knaup, Isabell Koblitz, Eva Klopocki

 

The transmembrane protein Crb2a regulates cardiomyocyte apicobasal polarity and adhesion in zebrafish
Jimenez-Amilburu Vanesa, Didier Y.R. Stainier

 

Hair cells in zebrafish larvae, from Thiessen, et al.’s preprint

 

Zebrafish Otolith Biomineralization Requires Polyketide Synthase
Kevin D Thiessen, Lisa Higuchi, Kenneth L Kramer

 

Arterio-Venous Remodeling in the Zebrafish Trunk Is Controlled by Genetic Programming and Flow-Mediated Fine-Tuning
Ilse Geudens, Baptiste Coxam, Silvanus Alt, Veronique Gebala, Anne-Clemence Vion, Andre Rosa, Holger Gerhardt

 

Tbx1 regulates extracellular matrix-cell interactions in the second heart field.
Daniela Alfano, Alessandra Altomonte, Claudio Cortes, Marchesa Bilio, Robert G Kelly, Antonio Baldini

 

Abnormalities of placental development and function are associated with the different fetal growth patterns of hypoplastic left heart syndrome and transposition of the great arteries.
Weston Troja, Kathryn J Owens, Jennifer Courtney, Andrea C Hinton, Robert B Hinton, James F Cnota, Helen N Jones

 

Polarity signaling ensures epidermal homeostasis by coupling cellular mechanics and genomic integrity
Martim Dias Gomes, Soriba Letzian, Michael Saynisch, Sandra Iden

 

C. elegans sensory neurons from Low, et al.’s preprint

 

Morphogenesis of neurons and glia within an epithelium
Isabel I. C. Low, Claire R. Williams, Megan K. Chong, Ian G. McLachlan, Bradley M. Wierbowski, Irina Kolotuev, Maxwell G. Heiman

 

Aurora B is required for programmed variations of cytokinesis during morphogenesis in the C. elegans embryo
Xiaofei Bai, Po-Yi Lee, Chin-Yi Chen, James R. Simmons, Benjamin Nebenfuehr, Diana Mitchell, Lindsey R Klebanow, Nicholas Mattson, Christopher G Sorensen Turpin, Bi-Chang Chen, Eric Betzig, Joshua N Bembenek

 

A Drosophila egg chamber from Balaji, et al.’s preprint

 

Regulation of tensile stress in response to external forces coordinates epithelial cell shape transitions with organ growth and elongation
Ramya Balaji, Vanessa Weichselberger, Anne-Kathrin Classen

 

Actomyosin-driven tension at compartmental boundaries orients cell division independently of cell geometry in vivo
Elena Scarpa, Cedric Finet, eGuy Blanchard, Benedicte Sanson

 

Distinct contributions of tensile and shear stress on E-cadherin levels during morphogenesis
Girish R Kale, Xingbo Yang, Jean-Marc Philippe, Madhav Mani, Pierre-Francois Lenne, Thomas Lecuit

 

3D Tissue elongation via ECM stiffness-cued junctional remodeling
Dong-Yuan Chen, Justin Crest, Sebastian J Streichan, David Bilder

 

A Fasciclin 2 functional switch controls organ size in Drosophila
Emma Velasquez, Jose A Gomez-Sanchez, Emmanuelle Donier, Carmen Grijota-Martinez, Hugo Cabedo, Luis A Garcia-Alonso

 

Morphogenetic processes as data: Quantitative structure in the Drosophila eye imaginal disc
Bradly Alicea, Thomas E Portegys, Diana Gordon, Richard Gordon

 

KATANIN-dependent mechanical properties of the stigmatic cell wall regulate pollen tube pathfinding
Lucie Riglet, Frederique Rozier, Chie Kodera, Isabelle Fobis-Loisy, Thierry Gaude

 

| Genes & genomes

Sensory neurons control heritable adaptation to stress through germline reprogramming
Zuco Giusy, Vikas Kache, Pedro Robles, Jyotiska Chaudhuri, Beth Hill, Christine Bateson, Andre Pires da Silva

 

Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma
Katharina Gapp, Gretchen van Steenwyk, Pierre-Luc Germain, Wayo Matsushima, Konrad Rudolph, Francesca Manuella, Martin Roszkowski, Gregoire Vernaz, Tanay Gosh, Pawel Pelczar, Isabelle M Mansuy, Eric Miska

 

H3K9me3 is Required for Transgenerational Inheritance of Small RNAs that Target a Unique Subset of Newly Evolved Genes
Itamar Lev, Hila Gingold, Oded Rechavi

 

HERI-1 is a Chromodomain Protein that Negatively Regulates Transgenerational Epigenetic Inheritance
Roberto Perales, Daniel Pagano, Gang Wan, Brandon Fields, Arneet L. Saltzman, Scott Kennedy

 

Transgenerational sterility of Piwi pathway mutants in response to germ granule dysfunction
Katherine Kretovich Billmyre, Bree Heestand, Maya Spichal, Stephen Frenk, Shawn Ahmed

 

Visualising germ granules in Billmyre, et al.’s preprint

 

Nematode germ granule assembly is linked to mRNA repression
Scott T Aoki, Sarah L Crittenden, Tina R Lynch, Craig A Bingman, Marvin Wickens, Judith Kimble

 

Some stitched-together worms from Ravikumar, et al.’s preprint

 

Gene silencing by double-stranded RNA from C. elegans neurons reveals functional mosaicism of RNA interference
Snusha Ravikumar, Sindhuja Devanapally, Antony M Jose

 

Trans-splicing of the C. elegans let-7 primary transcript developmentally regulates let-7 microRNA biogenesis and let-7 family microRNA activity
Charles Nelson, Victor Ambros

 

Multi-modal regulation of C. elegans hermaphrodite spermatogenesis by the GLD-1-FOG-2 complex
Shuang Hu, Lauren E. Ryan, Ebru Kaymak, Lindsay Freeberg, Te-Wen Lo, Scott Kuersten, Sean P. Ryder, Eric S. Haag

 

C. elegans exhibits coordinated oscillation in gene activation in single-cell developmental data
Luke A. D. Hutchison, Bonnie Berger, Isaac Kohane

 

Tissue- and sex-specific small RNAomes reveal sex differences in response to the environment
Alexandra Bezler, Fabian Braukmann, Sean West, Arthur Duplan, Raffaell Conconi, Frederic Schuetz, Pierre Goenczy, Fabio Piano, Kristin Gunsalus, Eric Miska, Laurent Keller

 

Identification of functional long non-coding RNAs in C. elegans
Alper Akay, David Jordan, Isabela C. Navarro, Tomasz Wrzesinski, Chris P. Ponting, Eric A. Miska, Wilfried Haerty

 

Necessity and contingency in developmental genetic screens: LIN-3, Wnt and semaphorin pathways in vulval induction of the nematode Oscheius tipulae
Marie-Anne Félix, Amhed Missael Vargas Velazquez, Fabrice Besnard

 

A bipartite boundary element restricts UBE3A imprinting to mature neurons.
Jack S Hsiao, Noelle D Germain, Andrea Wilderman, Christopher Stoddard, Luke A Wojenski, Geno J Villafano, Leighton Core, Justin Cotney, Stormy J Chamberlain

 

Single-cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development
Thorsten Boroviak, Giuliano G Stirparo, Sabine Dietmann, Irene H Herraez, Hisham Mohammed, Wolf Reik, Austin Smith, Erika Sasaki, Jennifer Nichols, Paul Bertone

 

Complex cell-state changes revealed by single cell RNA sequencing of 76,149 microglia throughout the mouse lifespan and in the injured brain
Timothy R Hammond, Connor Dufort, Lasse Dissing-Olesen, Stefanie Giera, Adam Young, Alec Wysoker, Alec J Walker, Michael Segel, James Nemesh, Arpiar Saunders, Evan Macosko, Robin JM Franklin, Xianhua Piao, Steve McCarroll, Beth Stevens

 

Mapping cell types in the foetal human neocortex, from Polioudakis, et al.’s preprint

 

A single cell transcriptomic analysis of human neocortical development
Damon Polioudakis, Luis de la Torre-Ubieta, Justin Langerman, Andrew G Elkins, Jason L Stein, Celine K Vuong, Carli K Opland, Daning Lu, William Connell, Elizabeth K Ruzzo, Jennifer K Lowe, Tarik Hadzic, Flora I Hinz, Shan Sabri, William E Lowry, Kathrin Plath, Daniel H Geschwind

 

Single-cell RNA-seq reveals dynamic transcriptome profiling in human early neural differentiation
Zhouchun Shang, Dongsheng Chen, Quanlei Wang, Shengpeng Wang, Qiuting Deng, Liang Wu, Chuanyu Liu, Xiangning Ding, Shiyou Wang, Jixing Zhong, Doudou Zhang, Xiaodong Cai, Shida Zhu, Huanming Yang, Longqi Liu, J. Lynn Fink, Fang Chen, Xiaoqing Liu, Zhengliang Gao, Xun Xu

 

Human-specific ARHGAP11B induces hallmarks of neocortical expansion in developing ferret neocortex
Nereo Kalebic, Carlotta Gilardi, Mareike Albert, Takashi Namba, Katherine R. Long, Milos Kostic, Barbara Langen, Wieland B. Huttner

 

Zebrafish muscles from Sharma, et al.’s preprint

 

Single cell dynamics of embryonic muscle progenitor cells in zebrafish
Priyanka Sharma, Tyler D Ruel, Katrinka M Kocha, Shan Liao, Peng Huang

 

Epigenetic factors coordinate intestinal development
Julia Ganz, Ellie Melancon, Catherine Wilson, Angel Amores, Peter Batzel, Marie Strader, Ingo Braasch, Parham Diba, Julie A Kuhlman, John H Postlethwait, Judith S Eisen

 

Single-cell RNA-seq reveals distinct dynamic behavior of sex chromosomes during early human embryogenesis
Qing Zhou, Taifu Wang, Lizhi Leng, Wei Zheng, Jinrong Huang, Fang Fang, Ling Yang, Jian Wang, Huanming Yang, Fang Chen, Ge Lin, Wen-Jing Wang, Karsten Kristiansen

 

Single cell RNA-seq study of wild type and Hox9,10,11 mutant developing uterus
S. Steven Potter, Michael L. Mucenski, Robert Mahoney, Mike Adam, Andrew S. Potter

 

MiR-505-3p is a Repressor of the Puberty Onset in Female Mice
Yuxun Zhou, li tong, maochun wang, xueying chang, sijia wang, kai li, Junhua Xiao

 

An Evolutionarily Conserved piRNA-producing Locus Required for Male Mouse Fertility
Pei-Hsuan Wu, Yu Fu, Katharine Cecchini, Deniz M Ozata, Zhiping Weng, Phillip D Zamore

 

Brain slices from Wojcinski, et al.’s preprint

 

Genetic deletion of genes in the cerebellar rhombic lip lineage can stimulate compensation through adaptive reprogramming of ventricular zone-derived progenitors
Alexandre Wojcinski, Morgane Morabito, Andrew K Lawton, Daniel N Stephen, Alexandra L Joyner

 

Wholemount mouse retinas from Laboulaye, et al.’s preprint

 

Mapping Transgene Insertion Sites Reveals Complex Interactions Between Mouse Transgenes And Neighboring Endogenous Genes
Mallory A Laboulaye, Xin Duan, Mu Qiao, Irene E Whitney, Joshua Sanes

 

An homeotic post-transcriptional network controlled by the RNA-binding protein RBMX
Paola Zuccotti, Daniele Peroni, Valentina Potrich, Alessandro Quattrone, Erik Dassi

 

KLF4 binding during reprogramming is involved in 3D architectural rewiring and transcriptional regulation of enhancer hubs
Dafne Campigli Di Giammartino, Yiyuan Liu, Andreas Kloetgen, Alexander Prokopios Polyzos, Daleum Kim, Matthias Stadtfeld, Aristotelis Tsirigos, Effie Apostolou

 

Analysis of novel domain-specific mutations in the zebrafish ndr2/cyclops gene generated using CRISPR-Cas9 RNPs
Ashley N Turner, Reagan S Andersen, Ivy E Bookout, Lauren N Brashear, James C Davis, David M Gahan, John P Gotham, Baraa A Hijaz, Ashish S Kaushik, Jordan B McGill, Victoria L Miller, Zachariah P Moseley, Cerissa L Nowell, Riddhi K Patel, Mia C Rodgers, Yazen A Shihab, Austin P Walker, Sarah R Glover, Samantha D Foster, Anil Kumar Challa

 

Compensatory mechanisms render Tcf7l1a dispensable for eye formation despite its requirement in eye field specification
Rodrigo M Young, Florencia Cavodeassi, Thomas A Hawkins, Heather L Stickney, Quenten Schwarz, Lisa M Lawrence, Claudia Wierzbicki, Gaia Gestri, Elizabeth Mayela Ambrosio, Allison Klosner, Jasmine Rowell, Isaac H. Bianco, Miguel L Allende, Stephen W Wilson

 

Myc is dispensable for cardiac development in the mouse but rescues Mycn-deficient hearts through functional replacement and cell competition
Noelia Muñoz-Martín, Rocío Sierra, Thomas Schimmang, Cristina Villa del Campo, Miguel Torres

 

The splicing regulator Prp31 prevents retinal degeneration in Drosophila by regulating Rhodopsin levels
Malte Lehmann, Sarita Hebbar, Sarah Behrens, Weihua Leng, Michaela Yuan, Sylke Winkler, Elisabeth Knust

 

Asymmetric histone incorporation during DNA replication in Drosophila male germline stem cells
Matthew Wooten, Jonathan Snedeker, Zehra Nizami, Xinxing Yang, Elizabeth Urban, Xinyu Ashlee Feng, Jee Min Kim, Joseph Gall, Jie Xiao, Xin Chen

 

Deterministic splicing of Dscam2 is regulated by Muscleblind
Joshua Shing Shun Li, S Sean Millard

 

Effects of the maternal factor Zelda on zygotic enhancer activity in the Drosophila embryo
Xiao-Yong Li, Michael B Eisen

 

Live imaging of nascent transcription in Drosophila embryos, from Scholes, et al.’s preprint

 

Computations performed by shadow enhancers and enhancer duplications vary across the Drosophila embryo
Clarissa Scholes, Kelly M Biette, Timothy T Harden, Angela H DePace

 

Chromatin architecture reorganisation during neuronal cell differentiation in Drosophila genome
Keerthi T Chathoth, Nicolae Radu Zabet

 

Drosophila salivary glands from Pillidge and Bray’s preprint

 

SWI/SNF chromatin remodeling controls Notch-responsive enhancer accessibility
Zoe Pillidge, Sarah J. Bray

 

A variably imprinted epiallele impacts seed development
Daniela Pignatta, Katherine Novitzky, P.R. V. Satyaki, Mary Gehring

 

Developing maize from Stephenson, et al.’s preprint

 

Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize
Elizabeth Stephenson, Stacey Estrada, Xin Meng, Jesse Ourada, Michael G Muszynski, Jeffrey E Habben, Olga Danilevskaya

 

Maize YABBY drooping leaf genes regulate floret development and floral meristem determinacy
Josh Strable, Erik Vollbrecht

 

Methyl-CpG-binding domain 9 (MBD9) is required for H2A.Z incorporation into chromatin at a subset of H2A.Z-enriched regions in the Arabidopsis genome
Paja Sijacic, Dylan H Holder, Marko Bajic, Roger B. Deal

 

Functional dissection of the ARGONAUTE7 promoter
J Steen Hoyer, Jose L Pruneda-Paz, Ghislain Breton, Mariah A Hassert, Emily E Holcomb, Halley Fowler, Kaylyn M Bauer, Jacob Mreen, Steve A Kay, James C Carrington

 

A Genome-Wide Association Study Reveals a Novel Regulator of Ovule Number and Fertility in Arabidopsis thaliana
Jing Yuan, Sharon A Kessler

 

A transmissible RNA pathway in honey bees
Eyal Maori, Yael Garbian, Vered Kunik, Rita Mozes-Koch, Osnat Malka, Haim Kalev, Niv Sabath, Ilan Sela, Sharoni Shafir

 

 

| Stem cells, regeneration & disease modelling

The RNA-Binding Protein DND1 Acts Sequentially as a Negative Regulator of Pluripotency and a Positive Regulator of Epigenetic Modifiers Required for Germ Cell Reprogramming
Victor A Ruthig, Matthew B Friedersdorf, Jason A Garness, Steve C Munger, Corey Bunce, Jack D Keene, Blanche Capel

 

Delayed aneuploidy stress response of neural stem cells impairs adult lifespan in flies
Mihailo Mirkovic, Leonardo G Guilgur, Diogo Passagem-Santos, Raquel A Oliveira

 

Drosophila small ovary gene ensures germline stem cell maintenance and differentiation by silencing transposons and organising heterochromatin
Ferenc Jankovics, Melinda Bence, Rita Sinka, Aniko Farago, Laszlo Bodai, Aladar Pettko-Szandtner, Karam Ibrahim, Zsanett Takacs, Alexandra B. Szarka-Kovacs, Miklos Erdelyi

 

Epigenetic analyses of planarian stem cells demonstrate conservation of bivalent histone modifications in animal stem cells.
Anish Dattani, Damian Kao, Yuliana Mihaylova, Prasad Abnave, Samantha Hughes, Alvina Lai, Sounak Sahu, Aziz Aboobaker

 

Nucleosome dynamics of human iPSC during the early stages of neurodevelopment
Janet C Harwood, Nicholas A Kent, Nicholas D Allen, Adrian J Harwood

 

Gene Correction for SCID-X1 in Long-Term Hematopoietic Stem Cells
Mara Pavel-Dinu, Volker Wiebking, Beruh T Dejene, Waracharee Srifa, Sruthi Mantri, Carmencita Nicolas, Ciaran Lee, Gang Bao, Eric J Kildebeck, Niraj Punjya, Camille Sindhu, Matthew A Inlay, Nivi Saxena, Suk See DeRavin, Harry Malech, Maria Grazia Roncarolo, Kenneth I Weinberg, Matthew Porteus

 

Neural crest stem cells from Stebbins, et al.’s preprint

 

Human pluripotent stem cell-derived brain pericyte-like cells induce blood-brain barrier properties
Matthew J Stebbins, Benjamin D Gastfriend, Scott G Canfield, Ming-Song Lee, Drew Richards, Madeline G Faubion, Wan-Ju Li, Richard Daneman, Sean P Palecek, Eric V Shusta

 

Signalling pathways drive heterogeneity of ground state pluripotency
Kirsten R McEwen, Sarah Linnett, Harry G Leitch, Prashant Srivastava, Lara Al-Zouabi, Tien-Chi Huang, Maxime Rotival, Alex Sardini, Thalia E Chan, Sarah Filippi, Michael Stumpf, Enrico Petretto, Petra Hajkova

 

Need for high-resolution Genetic Analysis in iPSC: Results and Lessons from the ForIPS Consortium
Bernt Popp, Mandy Krumbiegel, Janina Grosch, Annika Sommer, Steffen Uebe, Zacharias Kohl, Sonja Ploetz, Michaela Farrell, Udo Trautmann, Cornelia Kraus, Arif B Ekici, Reza Asadollahi, Martin Regensburger, Katharina Guenther, Anita Rauch, Frank Edenhofer, Juergen Winkler, Beate Winner, Andre Reis

 

Inter-species differences in response to hypoxia in iPSC-derived cardiomyocytes from humans and chimpanzees
Michelle C Ward, Yoav Gilad

 

Synthetic and genomic regulatory elements reveal aspects of cis-regulatory grammar in Mouse Embryonic Stem Cells
Dana M King, Brett B. Maricque, Barak A. Cohen

 

Cerebrovascular Injuries Induce Lymphatic Invasion into Brain Parenchyma to Guide Vascular Regeneration in Zebrafish
Jingying Chen, Jianbo He, Qifen Yang, Yaoguang Zhang, Lingfei Luo

 

A human cell model of cardiac pathophysiological valvulogenesis
Tui Neri, Emylie Hiriart, Piet Van Vliet, Emilie Faure, Russel Norris, Batoul Farhat, Julie Lefrancois, Thomas Moore-Morris, Stephane Zaffran, Randolph Faustino, Alexander Zambon, Jean-Pierre Devisgnes, David Salgado, Yukiko Sugi, Robert Levine, Jose Luis de la Pompa, Andre Terzic, Sylvia Evans, Roger Markwald, michel Puceat

 

Metformin Intervention Prevents Cardiac Dysfunction in a Murine Model of Adult Congenital Heart Disease
Mauro W. Costa, Julia C. Wilmanns, Raghav Pandey, Olivia Hon, Anjana Chandran, Jan M. Schilling, Qizhu Wu, Gael Cagnone, Preeti Bais, Vivek Phillip, Heidi Kocalis, Stuart K. Archer, James T. Pearson, Mirana Ramialison, Joerg Heineke, Hemal H. Patel, Nadia A. Rosenthal, Milena B. Furtado

 

Regeneration-Associated Cells Improve Recovery from Myocardial Infarction through Enhanced Vasculogenesis, Anti-inflammation, and Cardiomyogenesis
Amankeldi A Salybekov, Akira T Kawaguchi, Haruchika Masuda, Kosit Vorateera, Chisa Okada, Takayuki Asahara

 

Evidence for minimal cardiogenic potential of Sca-1 positive cells in the adult mouse heart
Lauren E. Neidig, Florian Weinberger, Nathan J. Palpant, John Mignone, Amy M. Martinson, Daniel Sorensen, Ingrid Bender, Natsumi Nemoto, Hans Reinecke, Lil Pabon, Jeffery D Molkentin, Charles E. Murry, Jop van Berlo

 

Recapitulating bone development for tissue regeneration through engineered mesenchymal condensations and mechanical cues
Anna M. McDermott, Samuel Herberg, Devon E. Mason, Hope B. Pearson, James H. Dawahare, Joseph M. Collins, Rui Tang, Amit Patwa, Mark W. Grinstaff, Daniel J. Kelly, Eben Alsberg, Joel D. Boerckel

 

Development of retinal ganglion cells, from Rocha-Martins, et al.’s preprint

 

De novo genesis of retinal ganglion cells by targeted expression of KLF4 in vivo
Mauricio Rocha-Martins, Beatriz C de Toledo, Pedro L Santos-Franca, Viviane M Oliveira-Valenca, Carlos Henrique H Vieira e Vieira, Gabriel E Matos-Rodrigues, Rafael Linden, Caren Norden, Rodrigo A P Martins, Mariana S Silveira

 

Mesenchymal stem cells protect retinal ganglion cells from degeneration via mitochondrial donation
Dan JIANG, Hong Feng, Zhao Zhang, Bin Yan, Ling Chen, Chuiyan Ma, Cheng Li, Shuo Han, Yuelin Zhang, Peikai Chen, Hung-Fat Tse, Qingling Fu, Kin Chiu, Qizhou Lian

 

CDK inhibitors reduce cell proliferation and reverse hypoxia-induced metastasis of neuroblastoma tumours in a chick embryo model
Rasha R Swadi, Keerthika Sampat, Anne Herrmann, Paul D Losty, Violaine See, Diana Moss

 

Comprehensive modeling of Spinal Muscular Atrophy in Drosophila melanogaster
Ashlyn M. Spring, Amanda C. Raimer, Christine D. Hamilton, Michela J. Schillinger, A. Gregory Matera

 

Modeling motor neuron resilience in ALS using stem cells
Ilary Allodi, Jik Nijssen, Julio Cesar Aguila Benitez, Gillian Bonvicini, Ming Cao, Eva Hedlund

 

Genome-wide chromatin accessibility and transcriptome profiling show minimal epigenome changes and coordinated transcriptional dysregulation of hedgehog signaling in Danforth’s short tail mice
Peter Orchard, James S. White, Peedikayil E. Thomas, Anna Mychalowych, Anya Kiseleva, John Hensley, Benjamin Allen, Stephen C.J. Parker, Catherine E. Keegan

 

Enhanced axonal Neuregulin-1 type-III signaling ameliorates disease severity in a CMT1B mouse model
Cristina Scapin, Cinzia Ferri, Emanuela Pettinato, Désiree Zambroni, Francesca Bianchi, Sophie Belin, Ubaldo Del Carro, Nico Mitro, Donatella Caruso, Marta Pellegatta, Carla Taveggia, Markus H. Schwab, Klaus-Armin Nave, Maria Laura Feltri, Lawrence Wrabetz, Maurizio D’Antonio

 

 

Evo-devo & evo

Wasp embryos from Lynch & Pers’ preprint

 

Ankyrin domain encoding genes resulting from an ancient horizontal transfer are functionally integrated into developmental gene regulatory networks in the wasp Nasonia
Jeremy Lynch, Daniel Pers

 

A large-scale systemic RNAi screen in the red flour beetle Tribolium castaneum identifies novel genes involved in arthropod muscle development
Dorothea Schultheis, Matthias Weißkopf, Christoph Schaub, Salim Ansari, Van-Anh Dao, Daniela Grossmann, Upalparna Majumdar, Muhammad Salim Din Muhammad, Nicole Troelenberg, Tobias Richter, Christian Schmitt-Engel, Jonas Schwirz, Nadia Ströhlein, Matthias Teuscher, Gregor Bucher, Manfred Frasch

 

Tribolium embryos from Schultheis, et al.’s preprint

 

RNAi screen in Tribolium reveals involvement of F-BAR proteins in myoblast fusion and visceral muscle morphogenesis in arthropods
Dorothea Schultheis, Jonas Schwirz, Manfred Frasch

 

Decoupling from yolk sac is required for extraembryonic tissue spreading in the scuttle fly Megaselia abdita.
Francesca Caroti, Everardo González Avalos, Viola Noeske, Paula González Avalos, Dimitri Kromm, Maike Wosch, Lucas Schütz, Lars Hufnagel, Steffen Lemke

 

Influence of temperature on the development, reproduction and regeneration in the flatworm model organism Macrostomum lignano
Jakub Wudarski, Kirill Ustyantsev, Lisa Glazenburg, Eugene Berezikov

 

Development of fluorescent chromatophores in the daggerblade grass shrimp, from Phelps’s preprint

 

DEVELOPMENTAL DYNAMICS OF GREEN FLUORESCENT CHROMATOPHORES IN THE DAGGERBLADE GRASS SHRIMP, PALAEMONETES PUGIO HOLTHUIS, 1949 (DECAPODA, CARIDEA, PALAEMONIDAE)
Michael P Phelps

 

Proliferation of Superficial Neuromasts During Lateral Line Development in the Round Goby, Neogobius melanostomus
Juleen Dickson, John A Janssen

 

Clownfishes are a genetic model of exceptional longevity and reveal molecular convergence in the evolution of lifespan
Arne Sahm, Pedro Almaida-Pagan, Martin Bens, Mirko Mutalipassi, Alejandro Lucas-Sanchez, Jorge de Costa Ruiz, Matthias Goerlach, Alessandro Cellerino

 

Choanoflagellate transfection illuminates their cell biology and the ancestry of animal septins
David Booth, Heather Middleton, Nicole King

 

Glycosyltransferases promote development and prevent promiscuous cell aggregation in the choanoflagellate S. rosetta
Laura Wetzel, Tera Levin, Ryan E Hulett, Daniel Chan, Grant King, Reef Aldayafleh, David Booth, Monika Abedin Sigg, Nicole King

 

Adaptive evolution of animal proteins over development: support for the Darwin selection opportunity hypothesis of Evo-Devo
Jialin Liu, Marc Robinson-Rechavi

 

Phenotypic Effects of Somatic Mutations Accumulating during Vegetative Growth
Mitch Cruzan, Matthew Streisfeld, Jaime Schwoch

 

An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice
João L. P. Castro, Michelle N. Yancoskie, Marta Marchini, Stefanie Belohlavy, Marek Kučka, William H. Beluch, Ronald Naumann, Isabella Skuplik, John Cobb, Nick H Barton, Campbell Rolian, Yingguang Frank Chan

 

Adaptive evolution of sperm proteins depends on sperm competition in a pair of Lepidoptera
Andrew J. Mongue, Megan E. Hansen, Liuqi Gu, Clyde E. Sorenson, James R. Walters

 

Manduca sperm under SEM, from Whittington, et al.’s preprint

 

Evolutionary proteomics reveals distinct patterns of complexity and divergence between lepidopteran sperm morphs
Emma Whittington, Tim Karr, Andrew J Mongue, Steve Dorus, James Walters

 

Non-linear phenotypic variation uncovers the emergence of heterosis in Arabidopsis thaliana
Francois VASSEUR, Louise Fouqueau, Dominique de Vienne, thibault nidelet, Cyrille Violle, Detlef Weigel

 

Repeated evolution of asexuality involves convergent gene expression changes
Darren J Parker, Jens Bast, Kirsten Jalvingh, Zoé Dumas, Marc Robinson-Rechavi, Tanja Schwander

 

Caenorhabditis uteleia under SEM, from Stevens, et al.’s preprint

 

Comparative genomics of ten new Caenorhabditis species
Lewis Stevens, Marie-Anne Félix, Toni Beltran, Christian Braendle, Carlos Caurcel, Sarah Fausett, David HA Fitch, Lise Frézal, Taniya Kaur, Karin C Kiontke, Matt D Newton, Luke M Noble, Aurélien Richaud, Matthew V Rockman, Walter Sudhaus, Mark Blaxter

 

The Genomic Basis of Arthropod Diversity
Gregg W. C. Thomas, Elias Dohmen, Daniel S. T. Hughes, Shwetha C. Murali, Monica Poelchau, Karl Glastad, Clare A. Anstead, Nadia A. Ayoub, Phillip Batterham, Michelle Bellair, Gretta J Binford, Hsu Chao, Yolanda H Chen, Christopher Childers, Huyen Dinh, HarshaVardhan Doddapaneni, Jian J Duan, Shannon Dugan, Lauren A Esposito, Markus Friedrich, Jessica Garb, Robin B. B Gasser, Michael A. D. Goodisman, Dawn E Gundersen-Rindal, Yi Han, Alfred M Handler, Masatsugu Hatakeyama, Lars Hering, Wayne B Hunter, Panagiotis Ioannidis, Joy C Jayaseelan, Divya Kalra, Abderrahman Khila, Pasi K Korhonen, Carol Eunmi Lee, Sandra L Lee, Yiyuan Li, Amelia R.I. Lindsey, Georg Mayer, Alistair P McGregor, Duane D. McKenna, Bernhard Misof, Mala Munidasa, Monica Munoz-Torres, Donna M Muzny, Oliver Niehuis, Nkechinyere Osuji-Lacy, Subba R. Palli, Kristen A. Panfilio, Matthias Pechmann, Trent Perry, Ralph S. Peters, Helen C Poynton, Nikola-Michael Prpic, Jiaxin Qu, Dorith Rotenberg, Coby Schal, Sean D Schoville, Erin D Scully, Evette Skinner, Daniel B Sloan, Richard Stouthamer, Michael R Strand, Nikolaus U Szucsich, Asela Wijeratne, Neil D Young, Eduardo E Zattara, Joshua B Benoit, Evgeny M Zdobnov, Michael E Pfrender, Kevin J Hackett, John H Werren, Kim C Worley, Richard A Gibbs, Ariel D Chipman, Robert M Waterhouse, Erich Bornberg-Bauer, Matthew W Hahn, Stephen Richards

 

New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life
Jürgen F. H. Strassert, Mahwash Jamy, Alexander P. Mylnikov, Denis V. Tikhonenkov, Fabien Burki

 

 

Cell biology

Activation of polarized cell growth by inhibition of cell polarity
Marco Geymonat, Anatole Chessel, James Dodgson, Hannah Punter, Felix Horns, Attila Csikasz-Nagy, Rafael E Carazo-Salas

 

Efa6 regulates axon growth, branching and maintenance by eliminating off-track microtubules at the cortex
Yue Qu, Ines Hahn, Meredith Lees, Jill Parkin, Andre Voelzmann, Karel Dorey, Alex Rathbone, Claire Friel, Victoria Allan, Pilar Okenve-Ramos, Natalia Sanchez-Soriano, Andreas Prokop

 

C. elegans embryos, cultured on PDMS triangles, from Klinkert, et al.’s preprint

 

Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans
Kerstin Klinkert, Nicolas Levernier, Peter Gross, Christian Gentili, Lukas von Tobel, Marie Pierron, Coralie Busso, Sarah Herrman, Stephan W Grill, Karsten Kruse, Pierre Gonczy

 

Cell type-specific structural plasticity of the ciliary transition zone in C. elegans
Jyothi S Akella, Malan S Silva, Natalia S. Morsci, Ken C.Q. Nguyen, William Rice, David H. Hall, Maureen M Barr

 

Breaking symmetry in the C. elegans zygote, from Kotak & Kapoor’s preprint

 

Centrosome Aurora A gradient ensures a single PAR-2 polarity axis by regulating RhoGEF ECT-2 localization in C. elegans embryos
Sachin Kotak, Sukriti Kapoor

 

Cyclin B3 promotes APC/C activation and anaphase I onset in oocyte meiosis
Mehmet E. Karasu, Nora Bouftas, Scott Keeney, Katja Wassmann

 

Protein Kinase A activity is regulated by actomyosin contractility during cell migration and is required for durotaxis
Andrew J McKenzie, Tamara F Williams, Kathryn V Svec, Alan K Howe

 

Balancing dynamic tradeoffs to drive cellular reprogramming
Kimberley N Babos, Kate E Galloway, Kassandra K Kisler, Madison Zitting, Yichen Li, Brooke Quintino, Robert H Chow, Berislav V Zlokovic, Justin K Ichida

 

Transcription factor activity and nucleosome organisation in mitosis
Nicola Festuccia, Nick Owens, Thaleia Papadopoulou, Inma Gonzalez, Alexandra Tachtsidi, Sandrine Vandoermel-Pournin, Elena Gallego, Nancy Gutierrez, Agnes Dubois, Michel Cohen-Tannoudji, Pablo Navarro

 

Superresolution architecture of pluripotency guarding adhesions
Aki Stubb, Camilo Guzmán, Elisa Närvä, Jesse Aaron, Teng-Leong Chew, Markku Saari, Mitro Miihkinen, Guillaume Jacquemet, Johanna Ivaska

 

Troponin-I localizes selected apico-basal cell polarity signals
Sergio Casas-Tinto, Alberto Ferrus

 

Spatial Organization of Rho GTPase signaling by RhoGEF/RhoGAP proteins
Paul Markus Mueller, Juliane Rademacher, Richard D Bagshaw, Keziban Merve Alp, Girolamo Giudice, Louise E Heinrich, Carolin Barth, Rebecca L Eccles, Marta Sanchez-Castro, Lennart Brandenburg, Geraldine Mbamalu, Monika Tucholska, Lisa Spatt, Celina Wortmann, Maciej T Czajkowski, Robert William Welke, Sunqu Zhang, Vivian Nguyen, Trendelina Rrustemi, Philipp Trnka, Kiara Freitag, Brett Larsen, Oliver Popp, Philipp Mertins, Chris Bakal, Anne-Claude Gingras, Olivier Pertz, Frederick P Roth, Karen Colwill, Tony Pawson, Evangelia Petsalaki, Oliver Rocks

 

Mitotic chromosome binding predicts transcription factor properties in interphase
Mahe Raccaud, Andrea B Alber, Elias T Friman, Harsha Agarwal, Cedric Deluz, Timo Kuhn, J. Christof M Gebhardt, David M Suter

 

Single-molecule imaging reveals the interplay between transcription factors, nucleosomes, and transcriptional bursting
Benjamin T Donovan, Anh Huynh, David A Ball, Michael G Poirier, Daniel R Larson, Matthew L Ferguson, Tineke L Lenstra

 

β-actin mRNA interactome mapping by proximity biotinylation
Joyita Mukherjee, Orit Hermesh, Nicolas Nalpas, Mirita Franz-Wachtel, Boris Macek, Ralf-Peter Jansen

 

F-actin dynamics transform filopodial bridges into intercellular nanotubes capable of distant cell communication
Minhyeok Chang, Jaeho Oh, Junsang Doh, Jong-Bong Lee

 

Lysosome exocytosis is required for mitosis
Charlotte Nugues, Nordine Helassa, Robert Burgoyne, Lee Haynes

 

Excitable dynamics of Ras triggers self-organized PIP3 signaling for spontaneous cell migration
Seiya Fukushima, Satomi Matsuoka, Masahiro Ueda

 

Fine Tuning of Histone Demethylase KDM6A/B Improves the Development of Nuclear Transfer Embryo
Lei Yang, Lishuang Song, Xuefei Liu, Lige Bai, Guangpeng Li

 

Modelling

 

Modelling auxin patterning in Hartmann, et al.’s preprint

 

Toward a 3D model of phyllotaxis based on a biochemically plausible auxin-transport mechanism
Félix P Hartmann, Pierre Barbier de Reuille, Cris Kuhlemeier

 

Mathematical modeling supports fate restriction in neurogenic progenitors of the embryonic ventral spinal cord
Manon Azaïs, Eric Agius, Stéphane Blanco, Jacques Gautrais, Angie Molina, Fabienne Pituello, Jean-Marc Trégan

 

Toward deciphering developmental patterning with deep neural network
Jingxiang Shen, Mariela D Petkova, Feng Liu, Chao Tang

 

A Gene Regulatory Model of Cortical Neurogenesis
Sabina Pfister, Andreas Hauri, Frederic Zubler, Gabriela Michel, Henry Kennedy, Colette DeHay, Rodney Douglas

 

Crawling migration under chemical signalling: a stochastic particle model
Christèle Etchegaray , Nicolas Meunier

 

A stochastic model for protrusion activity
Christèle Etchegaray, Nicolas Meunier

 

Mechanistic and experimental models of cell migration reveal the importance of intercellular interactions in cell invasion
Oleksii Matisaka, Ruth Baker, Esha Shah, Matthew Simpson

 

A hybrid cellular automaton model of cartilage regeneration capturing the interactions between cellular dynamics and scaffold porosity
Simone Cassani, Sarah D. Olson

 

Wound healing in Staddon, et al.’s preprint

 

Cooperation of dual modes of cell motility promotes epithelial stress relaxation to accelerate wound healing
Michael F. Staddon, Dapeng Bi, A. Pasha Tabatabai, Visar Ajeti, Michael P. Murrell, Shiladitya Banerjee

 

A least microenvironmental uncertainty principle (LEUP) as a generative model of collective cell migration mechanisms.
Arnab Barua, Josue Manik Navas Sedeno, Haralampos Hatzikirou

 

 

Tools & resources

Mohlin, et al.’s crestospheres

 

Maintaining trunk neural crest cells as crestospheres
Sofie Mohlin, Ezgi Kunttas, Camilla U Persson, Reem Abdel-Haq, Aldo Castillo, Christina Murko, Marianne E Bronner, Laura Kerosuo

 

iProteinDB: an integrative database of Drosophila post-translational modifications
Yanhui Hu, Richelle Sopko, Verena Chung, Romain A Studer, Sean D Landry, Daniel Liu, Leonard Rabinow, Florian Gnad, Pedro Beltrao, Norbert Perrimon

 

Drosophila pupae from Schoborg, et al.’s preprint

 

Micro computed tomography as an accessible imaging platform for exploring organism development and human disease modeling
Todd Schoborg, Samantha Smith, Lauren Smith, H. Douglas Morris, Nasser M Rusan

 

Selective volume illumination microscopy offers synchronous volumetric imaging with high contrast
Thai V. Truong, Daniel B. Holland, Sara Madaan, Andrey Andreev, Joshua V. Troll, Daniel E. S. Koo, Kevin Keomanee-Dizon, Margaret McFall-Ngai, Scott E. Fraser

 

Three-Dimensional Histology of Whole Zebrafish by Sub-Micron Synchrotron X-ray Micro-Tomography
Yifu Ding, Daniel J Vanselow, Maksim A Yakovlev, Spencer R Katz, Alex Y Lin, Darin P Clark, Phillip Vargas, Xuying Xin, Jean E Copper, Victor A Canfield, Khai C Ang, Yuxin Wang, Xianghui Xiao, Francesco De Carlo, Damian B. van Rossum, Patrick La Rivière, Keith C Cheng

 

Fast, versatile, and quantitative annotation of complex images
Kathleen Bates, Shen Jiang, Ruth Bates, Shivesh Chaudhary, Emily Jackson-Holmes, Melinda Jue, Erin McCaskey, Daniel Goldman, Hang Lu

 

A Multimodal Adaptive Super-Resolution and Confocal Microscope
Liyana Valiya Peedikakkal, Andrew Furley, Ashley J Cadby

 

Three-photon light-sheet fluorescence microscopy
Adrià Escobet-Montalbán, Federico M Gasparoli, Jonathan Nylk, Pengfei Liu, Zhengyi Yang, Kishan Dholakia

 

KymoButler: A deep learning software for automated kymograph tracing and analysis
Maximilian Jakobs, Andrea Dimitracopoulos, Kristian Franze

 

Raincloud plots: a multi-platform tool for robust data visualization

Micah Allen​, Davide Poggiali, Kirstie Whitaker, Tom R Marshall, Rogier Kievit

 

Comparative analysis of the effect of genomic isolators flanking transgenes to avoid positional effects in Arabidopsis
Ana Pérez-González, Elena Caro

 

High Aspect Ratio Nanomaterials Enable Delivery of Functional Genetic Material Without DNA Integration in Mature Plants
Gozde S. Demirer, Huan Zhang, Juliana Matos, Natalie Goh, Francis J Cunningham, Younghun Sung, Roger Chang, Abhishek J Aditham, Linda Chio, Myeong-Je Cho, Brian Staskawicz, Markita P. Landry

 

Rapid and efficient C-terminal labeling of nanobodies for DNA-PAINT
Valentin Fabricius, Jonathan Lefebre, Hylkje Geertsema, Stephen F Marino, Helge Ewers

 

Simultaneously visualising all 6 C. elegans chromosomes, from Fields, et al.’s preprint

 

A Multiplexed DNA FISH strategy for Assessing Genome Architecture in C. elegans
Brandon D Fields, Son C Nguyen, Guy Nir, Scott Kennedy

 

Translocation and duplication from CRISPR-Cas9 editing in Arabidopsis thaliana
Peter G Lynagh, Soichi Inagaki, Kirk R Amundson, Mohan P.A. Marimithu, Brett R. Pike, Isabelle M. Henry, Ek Han Tan, Luca Comai

 

Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation
Jana Ordon, Mauro Bressan, Carola Kretschmer, Luca Dall’Osto, Sylvestre Marillonnet, Roberto Bassi, Johannes Stuttmann

 

Haplotype-phased Callithrix jacchus embryonic stem cell line for genome editing using CRISPR/Cas9
Bo Zhou, Steve S. Ho, Louis C. Leung, Thomas R. Ward, Marcus Ho, Melanie J. Plastini, Scott C. Vermilyea, Marina E. Emborg, Thaddeus G. Golos, Philippe Mourrain, Dimitri Perrin, Karen J. Parker, Alexander E. Urban

 

Target-specific precision of CRISPR-mediated genome editing
Anob M Chakrabarti, Tristan Henser-Brownhill, Josep Monserrat, Anna R Poetsch, Nicholas M Luscombe, Paola Scaffidi

 

New human chromosomal safe harbor sites for genome engineering with CRISPR/Cas9, TAL effector and homing endonucleases
Stefan Pellenz, Michael P Phelps, Weiliang Tang, Blake T Hovde, Ryan Sinit, Wenqing Fu, Hui Li, Eleanor Chen, Raymond Monnat Jr.

 

Efficient Zygotic Genome Editing via RAD51-Enhanced Interhomolog Repair
Jonathan J Wilde, Tomomi Aida, Martin Wienisch, Qiangge Zhang, Peimin Qi, Guoping Feng

 

Deep learning image recognition enables efficient genome editing in zebrafish by automated injections
Maria Lorena Cordero-Maldonado, Simon Perathoner, Kees-Jan van der Kolk, Ralf Boland, Ursula Heins-Marroquin, Herman P. Spaink, Annemarie H. Meijer, Alexander D. Crawford, Jan de Sonneville

 

Clonal analysis by tunable CRISPR-mediated excision
Anna F Gilles, Johannes B Schinko, Magdalena I Schacht, Camille Enjolras, Michalis Averof

 

Analysis and comparison of genome editing using CRISPResso2
Kendell Clement, Holly Rees, Matthew Canver, Jason Gehrke, Rick Farouni, Jonathan Hsu, Mitchel Cole, David R Liu, J. Keith Joung, Daniel E. Bauer, Luca Pinello

 

Mutations generated by repair of Cas9-induced double strand breaks are predictable from surrounding sequence
Felicity R Allen, Luca R Crepaldi, Clara Alsinet-Armengol, Alexander Strong, Vitalii Kleshchevnikov, Pietro De Angeli, Petra Palenikova, Michal Kosicki, Andrew R Bassett, Heather Harding, Yaron Galanty, Francisco Munoz Martinez, Emmanouil Metzakopian, Stephen P Jackson, Leopold Parts

 

Homology Directed Repair by Cas9:Donor Co-localization in Mammalian Cells
Philip JR Roche, Heidi Gytz, Faiz Hussain, Christopher JF Cameron, Denis Paquette, Mathieu Blanchette, Josée Dostie, Bhushan Nagar, Uri David Akavia

 

Decomposing cell identity for transfer learning across cellular measurements, platforms, tissues, and species.
Genevieve L Stein-O’Brien, Brian S. Clark, Thomas Sherman, Christina Zibetti, Qiwen Hu, Rachel Sealfon, Sheng Liu, Jiang Qian, Carlo Colantuoni, Seth Blackshaw, Loyal A. Goff, Elana J. Fertig

 

High-throughput single-cell transcriptome profiling of plant cell types
Christine N Shulse, Benjamin J Cole, Gina M Turco, Yiwen Zhu, Siobhan M Brady, Diane E Dickel

 

One read per cell per gene is optimal for single-cell RNA-Seq
Martin J. Zhang, Vasilis Ntranos, David Tse

 

Cell lineage inference from SNP and scRNA-Seq data
Jun Ding, Chieh Lin, Ziv Bar-Joseph

 

droplet-Tn-Seq combines microfluidics with Tn-Seq identifying complex single-cell phenotypes
Derek Thibault, Stephen Wood, Paul Jensen, Tim van Opijnen

 

SIS-seq, a molecular ‘time machine’, connects single cell fate with gene programs
Tian Luyi, Jaring Schreuder, Daniela Amann-Zalcenstein, Jessica Tran, Nikolce Kocovski, Shian Su, Peter Diakumis, Melanie Bahlo, Toby Sargeant, Matthew Ritchie, Philip Hodgkin, Shalin Naik

 

MULTI-seq: Scalable sample multiplexing for single-cell RNA sequencing using lipid-tagged indices
Christopher S McGinnis, David M Patterson, Juliane Winkler, Marco Y Hein, Vasudha Srivastava, Daniel N Conrad, Lyndsay M Murrow, Jonathan S Weissman, Zena Werb, Eric D Chow, Zev J Gartner

 

Simultaneous multiplexed amplicon sequencing and transcriptome profiling in single cells
Mridusmita Saikia, Philip Burnham, Sara H Keshavjee, Michael F Z Wang, Michael Heyang, Pablo Moral-Lopez, Meleana M Hinchman, Charles G Danko, John S L Parker, Iwijn De Vlaminck

 

High-throughput mapping of long-range neuronal projection using in situ sequencing
Xiaoyin Chen, Justus M Kebschull, Huiqing Zhan, Yu-Chi Sun, Anthony M Zador

 

SABER enables highly multiplexed and amplified detection of DNA and RNA in cells and tissues
Jocelyn Y. Kishi, Brian J. Beliveau, Sylvain W. Lapan, Emma R. West, Allen Zhu, Hiroshi M. Sasaki, Sinem K. Saka, Yu Wang, Constance L. Cepko, Peng Yin

 

Palantir characterizes cell fate continuities in human hematopoiesis
Manu Setty, Vaidotas Kiseliovas, Jacob Levine, Adam Gayoso, Linas Mazutis, Dana Pe’er

 

Mass-spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation
Bogdan Budnik, Ezra Levy, Guillaume Harmange, Nikolai Slavov

 

The Signaling Pathways Project: an integrated ‘omics knowledgebase for mammalian cellular signaling pathways
Scott Ochsner, David Abraham, Kirt Martin, Wei Ding, Apollo McOwiti, Zichen Wang, Kaitlyn Andreano, Ross Hamilton, Yue Chen, Angelica Hamilton, Marin Gantner, Michael Dehart, Shijing Qu, Susan Hilsenbeck, Lauren Becnel, Dave Bridges, Avi Maayan, Janice Huss, Fabio Stossi, Charles Foulds, Anastasia Kralli, Donald McDonnell, Neil McKenna

 

 

Research practice & education

Gender and international diversity improves equity in peer review
Dakota Murray, Kyle Siler, Vincent Lariviére, Wei Mun Chan, Andrew M. Collings, Jennifer Raymond, Cassidy R Sugimoto

 

Maintaining confidence in the reporting of scientific outputs

Sarabipour S, Wissink EM, Burgess SJ, Hensel Z, Debat H, Emmott E, Akay A, Akdemir K, Schwessinger B

 

Research Infrastructures offer capacity to address scientific questions never attempted before: Are all taxa equal? 

Arvanitidis CD, Warwick RM, Somerfield PJ, Pavloudi C, Pafilis E, Oulas A, Chatzigeorgiou G, Gerovasileiou V, Patkos T, Bailly N, Hernandez F, Vanhoorne B, Vandepitte L, Appeltans W, Adlard R, Adriaens P, Kee-Jeong A, Shane A, Nesrine A, Anderson G, Martin A, Arango C, Artois T, Atkinson S, Bank R, Barber AD, Barbosa JP, Bartsch I, Bellan-Santini D, Bernot J, Bieler R, Błażewicz M, Bock P, Böttger-Schnack R, Bouchet P, Boury-Esnault N, Boxshall G, Boyko CB, Nunes Brandão S, Bray R, Bruce NL, Cairns S, Campinas Bezerra TN, Cárdenas P, Chan BK, Chan T, Cheng L, Churchill M, Corbari L, Cordeiro R, Cornils A, Crandall KA, Cribb T, D’hondt J, Daly M, Daneliya M, Dauvin J, Davie P, De Broyer C, De Mazancourt V, De Voogd N, Decker P, Defaye D, Dijkstra H, Dohrmann M, Domning D, Downey R, Drapun I, Eisendle-Flöckner U, Ewers-Saucedo C, Faber M, Figueroa D, Finn J, Fonseca G, Fordyce E, Foster W, Furuya H, Galea H, Garcia-Alvarez O, Garic R, Gasca R, Gaviria-Melo S, Gerken S, Gibson D, Gil J, Gittenberger A, Glasby C, Gofas S, Gómez-Noguera SE, González-Solís D, Gordon D, Grabowski M, Gravili C, Guerra-García JM, Guidetti R, Guilini K, Hadfield KA, Hendrycks E, Herrera B, Ho J, Høeg J, Holovachov O, Hooge MD, Hooper J, Horton T, Hughes L, Hyžný M, Moretti LI, Iseto T, Ivanenko VN, Jarms G, Jaume D, Jazdzewski K, Karanovic I, Kim Y, King R, Klautau M, Kolb J, Kotov A, Krapp-Schickel T, Kremenetskaia A, Kristensen R, Kroh A, Kullander S, La Perna R, LeCroy S, Leduc D, Lemaitre R, Lörz A, Lowry J, Macpherson E, Madin L, Mamos T, Manconi R, Marshall B, Marshall DJ, Martin P, McInnes S, Mees J, Meidla T, Merrin K, Miljutin D, Mills C, Mokievsky V, Molodtsova T, Mooi R, Morandini AC, Moreira Da Rocha R, Moretzsohn F, Mortelmans J, Mortimer J, Musco L, Neubauer TA, Neubert E, Neuhaus PN, Nguyen AD, Nielsen C, Norenburg J, O’Hara T, Okahashi H, Opresko D, Osawa M, Ota Y, Paulay G, Perrier V, Perrin W, Petrescu I, Picton B, Pilger JF, Pisera A, Polhemus D, Poore G, Reimer JD, Reip H, Reuscher M, Rios Lopez P, Rius M, Rzhavsky A, Saiz-Salinas J, Sartori AF, Schatz H, Schierwater B, Schmidt-Rhaesa A, Schneider S, Schönberg C, Senna AR, Serejo C, Shaik S, Shamsi S, Sharma J, Shenkar N, Shinn A, Sicinski J, Siegel V, Sierwald P, Simmons E, Sinniger F, Sivell D, Sket B, Smit H, Smol N, Souza-Filho JF, Spelda J, Stampar SN, Stienen E, Stoev P, Stöhr S, Strand M, Suárez-Morales E, Summers M, Swalla BJ, Taiti S, Tanaka M, Tandberg AH, Tang D, Tasker M, ten Hove H, ter Poorten JJ, Thomas J, Thuesen EV, Thuy B, Timi JT, Todaro A, Turon X, Uetz P, Utevsky S, Vacelet J, Väinölä R, van der Meij SE, van Haaren T, Venekey V, Vos C, Walker-Smith G, Walter CT, Watling L, Wayland M, Whipps C, Williams G, Wilson R, Yasuhara M, Zanol J, Zeidler W.

 

Social media uptake of academic publications: Differences due to availability, subject and demographic parameters

Marta Lorenz​, Susanne Mikki

 

Measuring researcher independence using bibliometric data: A proposal for a new performance indicator
Peter Van den Besselaar, Ulf Sandström

 

Science podcasts: analysis of global production and output from 2004 to 2018
Lewis E MacKenzie

 

Why not…

Dogs, but not wolves, lose their sensitivity towards novelty with age
Christina Hansen Wheat, Wouter van der Bijl, Hans Temrin

 

Status of urban feral cats Felis catus in England: A comparative study
Nicholas P Askew, Flavie Vial, Graham C Smith

 

Thumbs up (No Ratings Yet)
Loading...

Tags:
Categories: Highlights

Cells in Evolutionary Biology

Posted by , on 2 September 2018

Cells in Evolutionary Biology: Translating Genotypes into Phenotypes – Past, Present, Future

1st Edition

Brian K. Hall, Sally A. Moody

 

This book is the first in a projected series on Evolutionary Cell Biology.

https://www.crcpress.com/Cells-in-Evolutionary-Biology-Translating-Genotypes-into-Phenotypes—Past/Hall-Moody/p/book/9781498787864

The intent of this book is to demonstrate the essential role of cellular mechanisms in transforming the genotype into the phenotype by transforming gene activity into evolutionary change in morphology. This book evaluates the evolution of cells themselves and the role cells play as agents of change at other levels of biological organization. Chapters explore Darwin’s use of cells in his theory of evolution as well as Weismann’s theory of the separation of germ plasm from body cells that influenced our understanding that acquired changes are not passed on to future generations. The study of evolution through the analysis of cell lineages during embryonic development is discussed.  Discovery that cells exchange organelles via symbiosis led to a fundamental reevaluation of prokaryotic and eukaryotic cells and to a reorganization of the Tree of Life. Identification of cellular signaling centers and mechanisms responsible for cellular patterning as mediators of phenotypic change during evolution is presented. Chapters present evidence for the  powerful new synergies between cell biology and evolutionary theory.

Thumbs up (No Ratings Yet)
Loading...

Categories: Book Reviews